Putting Mussels To The Test, How Effectively Will They Cleanup The Schuylkill River?
Photo

By Katherine Unger Baillie, Penn Today

[Editor’s Note: See how the restoration of freshwater mussels and American eels are related in a second story.]

The strong breeze made things complicated. Out on the back patio of Penn’s Lynch Labs, the five students in Byron Sherwood’s field biology course were managing pipettes, graduated cylinders, liquid nitrogen, water pumps, zip ties, and dozens of small sample tubes—not to mention six aquariums and a giant tank full of mussels.

Small gusts threaten to knock over equipment, blow away carefully pre-weighed filters, or introduce debris into their tanks. But quick thinking, nimble reflexes, and some on-the-go adjustments kept their experiments running smoothly.

Their objective? To evaluate the ability of mussels to clean the water, which had been freshly collected from Philadelphia’s own Schuylkill River early that morning.

“For me, some of the most impactful experiences in my education came from hands-on learning outside,” says Sherwood, a senior fellow in Penn’s Biology Department. “That was requirement number one for me in designing this course. We can have some time in lab to learn techniques, but my goal was to be out of the classroom as much as possible.”

Sherwood achieved this aim with Field Studies in Aquatic Microbial Ecology, leading the students on weekly trips to various sites around the city to observe and take samples from its urban waters.

A microbial ecologist, Sherwood moved to the Philadelphia area two years ago with his family, including wife Katie Barott, an assistant professor in the biology department, after having completed a postdoctoral position at the University of Hawaii at Manoa.

While his research had entailed studying the contribution of marine microbes to carbon dioxide emissions, he realized that in his new environs, he’d have to reframe his perspective.

“Just after we got here, I realized there’s no ocean,” he deadpans.

There is, however, no shortage of waterways, from the Schuylkill and Delaware rivers to smaller tributaries, like the Wissahickon and Cobbs creeks.

On the class field trips, Sherwood turned his and his students’ attention to the life in those waters, the bacteria that eke out a living amid the industrial toxins, runoff, and combined sewer overflows that pummel and pollute the rivers during heavy rain storms.

“I’m interested in what they eat, what they choose not to eat, who they kill or get killed by, and how all those tiny interactions scale up,” he says. “It’s ecology at the smallest scale.”

Getting out of the classroom and into the field was a draw for senior Izzy Viney of Carlsbad, California, who is majoring in cell and molecular biology. “When we went on these excursions,” she says, “we ended up having quite in-depth discussions about ecology and microbiology, just walking around and being in nature. Dr. Sherwood would facilitate our conversations and really try to probe us to to think deeply.”

When not the field, each student developed a proposal in the model of a National Science Foundation Graduate Research Fellowship application, guided by Sherwood.

A timely aquatic project allowed the class’s research to take on a practical slant. In January, the Commonwealth of Pennsylvania dedicated $7.9 million to create a mussel hatchery at Southwest Philadelphia’s Bartram’s Garden.

The hatchery, which is set to open in 2023 and is being developed by the nonprofit Partnership for the Delaware Estuary, may give rise to half a million freshwater mussels each year.

“Reading some of the popular news coverage of this,” says Sherwood, “the line I kept seeing is, ‘Mussels are going to clean the water.’” But he didn’t know what that meant on a scientific—specifically, a microbial—level, and what evidence existed to back it up.

After clearing the idea with the Partnership’s lead scientist, Danielle Kreeger, he directed the class to interrogate the hypothesis as the basis of their scientific pursuits.

“I posed the question, ‘Imagine you’re the CEO of the Philadephia Water Department and you’re being told that somebody wants to put mussels in the Schuylkill River, which could potentially decrease the cost of cleaning drinking water for the city,’” he says. “‘What are the two or three most basic things that you would want answered in order to determine if this project is worth your investment?’”

The students framed their hypotheses and designed experiments accordingly. They posed questions such as, do mussels reduce the number of bacteria and human pathogens in the water and if so, how quickly, and do they have a preference for what size particles they filter?

On a breezy, sun-dappled Friday in April, they got to work.

Over the course of the afternoon, it was clear that the mussels, a freshwater species called alewife floaters, were having an effect: Water in the experimental tanks appeared clarified, as if it had worked its way through a Brita filter, compared to the more murky control tanks.

But the more intricate follow-up work, including DNA analysis, counting bacterial colonies, and using flow cytometry to quantify the mussels’ filtering ability, will reveal with precision how the bivalves alter and interact with their aquatic environment.

Although each student was responsible for an individual project, the class also coordinated to ensure everyone was able to accomplish what they needed to.

“It was an important lesson in teamwork,” says JaHyun Yang, a senior biology major from Fairfax, Virginia.

In between fitting catheter tubes to a water pump, T.C. Sun, a senior biology major from North Potomac, Maryland, reported that the field course constituted “one of the best classes” he’s taken at Penn. “I’d rather be out here than in a lecture hall, and you learn just as much if not more.”

Sherwood is hopeful that once all the results and analyses are complete, the study may be solid enough to publish.

And in the meantime, Kreeger invited him to join the scientific advisory board of the Partnership for the Delaware Estuary’s Mussels for Clean Water Initiative, where he’s offered input in the lead-up to implementing the Bartram’s project, considering questions such as what species or mix of species to introduce.

A demonstration hatchery is already up and running at the Fairmount Water Works, but the Bartram’s project is envisioned as a production facility that could have a real impact on water quality.

“The questions we’re asking are really important,” Sherwood says. “There’s already a lot of public investment in this project, so anything we can contribute is of value.”

For the students, the experience gave them a taste of what it means to be a scientist, in all its untidy glory.

“The whole structure of the class taught me a lot about how science works in the real world, where things can be uncertain,” says Yang, who is considering possible careers in scientific art or conservation. “Some things can happen at the last minute that you’re not expecting,” she notes, like when the flow cytometer broke halfway through counting our bacteria samples. “You couldn’t be too attached to what you wrote down in the proposal.”

Looking to the future, with an additional appointment as a senior fellow in the Water Center at Penn and with support from the Penn Program in Environmental Humanities and a School of Arts and Sciences’ Making a Difference in Diverse Communities grant, Sherwood would like to impress upon more people the diversity and dynamism of life in the water.

“The next phase of this field course ‘experiment’ is to provide Penn students the opportunity to engage with the broader Philadelphia community,” says Sherwood. “There’s a real opportunity here to share these types of outdoor experiences with our neighbors in West Philadelphia.”

(Photo: Students (from left) Ahsen Kayani, Izzy Viney, Eric Ellison, and JaHyun Yang, as well as T.C. Sun (not pictured), busied themselves collecting DNA, culturing bacteria, and evaluating how much sediment the mussels filtered out.)

(Reprinted from Penn Today.)

NewsClips:

RiverFest 2019 Aims To Teach Kids Conservation In Scranton Along Lackawanna River

Micek: These Schoolkids Wanted People To Skip Using Plastic Straws For A Day And Got A Crash Course In Politics Instead

New Horticultural Center At Philadelphia School For The Blind Seeds A Connection To Nature

Corps Of Engineers Invites Public To Lockfest 2019 In Pittsburgh Saturday

Editorial: Children Witness Effort To Regrow Forests In Northumberland County 

Related Stories This Week:

Susquehanna River Basin Commission Hands-On Eels In The Classroom Restoration Program

Inaugural PA Trout In The Classroom Summit July 17-18 In Harrisburg

Video Of Harrisburg Peregrine Falcon Banding Now Available

Penn State Extension Dive Deeper Water Education Program Receives Governor's Award

Schuylkill Action Network Announces Winners Of 2019 Schuylkill Student Street Art Contest

Erie Times-News Connect With Your Environment: Keeping Pets From Becoming Invasive Species, Like Red-Eared Sliders

May Catalyst Newsletter Highlights How Slippery Rock Watershed Coalition Engages Youth In Watershed Ed Programs

Hawk Mountain Sanctuary Hosts Appalachian Adventure Summer Camp, Berks County

Related Stories:

DEP Blog: Reuniting Eels & Mussels May Unlock Water Quality Improvements In The Susquehanna River

Partnership For Delaware Estuary Launches 10-Year Comprehensive Conservation & Management Plan, Including Mussel Hatchery

Fairmount Water Works Shows Off Its Mussels In First City-Owned Hatchery In Philadelphia

EPA Announces Grant For Freshwater Mussel Research To DEP, Other States

After Century-Long Absence, Freshwater Mussel Found In Kiski River, Armstrong County

PennDOT Wins Award For One Of The Largest Endangered Species Conservation Efforts In North America; WPC Details Relocation Effort

Penn State: Fracking Wastewater Accumulation Found In Freshwater Mussel Shells

[Posted: May 18, 2019]


5/20/2019

Go To Preceding Article     Go To Next Article

Return to This PA Environment Digest's Main Page